A Computational Model of Fraction Arithmetic (in press, Psychological Review)
نویسندگان
چکیده
Many children fail to master fraction arithmetic even after years of instruction, a failure that hinders their learning of more advanced mathematics as well as their occupational success. To test hypotheses about why children have so many difficulties in this area, we created a computational model of fraction arithmetic learning and presented it with the problems from a widely used textbook series. The simulation generated many phenomena of children’s fraction arithmetic performance through a small number of common learning mechanisms operating on a biased input set. The biases were not unique to this textbook series – they were present in two other textbook series as well – nor were the phenomena unique to a particular sample of children – they were present in another sample as well. Among other phenomena, the model predicted the high difficulty of fraction division, variable strategy use by individual children and on individual problems, relative frequencies of different types of strategy errors on different types of problems, and variable effects of denominator equality on the four arithmetic operations. The model also generated non-intuitive predictions regarding the relative difficulties of several types of problems and the potential effectiveness of a novel instructional approach. Perhaps the most general lesson of the findings is that the statistical distribution of problems that learners encounter influences mathematics learning in powerful and often non-intuitive ways.
منابع مشابه
A computational model of fraction arithmetic.
Many children fail to master fraction arithmetic even after years of instruction, a failure that hinders their learning of more advanced mathematics as well as their occupational success. To test hypotheses about why children have so many difficulties in this area, we created a computational model of fraction arithmetic learning and presented it with the problems from a widely used textbook ser...
متن کاملDepression and Anxiety in Patients with Multiple Sclerosis (MS): A Systematic Review (In press)
Background: Multiple Sclerosis (MS) is considered as one of the most prevalent chronic and progressive neurological diseases that has high simultaneity with some psychological disorders such as depression and anxiety; we examined depression and anxiety in people suffering from MS in this review study. Methods: We conducted this study using a systematic review method relying on the search from...
متن کاملSelection of Intermodal Conductivity Averaging Scheme for Unsaturated Flow in Homogeneous Media
The nonlinear solvers in numerical solution of water flow in variably saturated soils are prone to convergence difficulties. Many aspects can give rise to such difficulties, like very dry initial conditions, a steep pressure gradient and great variation of hydraulic conductivity occur across the wetting front during the infiltration of water. So, the averaging method applied to compute hydraul...
متن کاملA Cognitive Model of Fraction Arithmetic
Learning about fractions is a critical step on the path to high school mathematics, yet many children never master basic knowledge such as fraction arithmetic procedures. To better understand these difficulties, the present study describes a computational model of fraction arithmetic problem solving. The model demonstrates that the majority of empirically observed errors over all four arithmeti...
متن کاملBook Review: Mohammad Yamani Douzi Sorkhabi, The Quality in Higher Education, Samt Press
The book "The Quality in Higher Education", in 11 chapters, presents and analyzes all the concepts and issues related to the university system and culture with a comprehensive view.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017